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Final Grant Report
AFOSR grant FA9550-09-1-0466

Co-P.I. Martin Wainwright
263 Cory Hall, Department of EECS,

University of California, Berkeley
Berkeley, CA 94720

Abstract: Recent developments in sensor technology, signal processing, and communica-
tions have enabled the conception and deployment of large-scale networked sensing systems
consisting of coordinated stationary and mobile platforms carrying sensors of diverse modal-
ities. The promise of systems lies in their ability to intelligently integrate information from
massive amounts of sensor data. At the core of these challenges is a fundamental information
fusion task.

The research performed under this grant served to address the modeling, algorithmic
and theoretical challenges associated with these problems of large-scale information fusion.
Significant accomplishments include (a) the development of message-passing algorithms for
distributed optimization and statistical inference, with applications to sensor fusion and com-
puter vision; (b) the formulation and analysis of convex relaxations for estimating low-rank
matrices from data, with applications to missing data problems, and tracking of dynamical
systems; (c) the development of non-parametric methods for solving high-dimensional predic-
tion problems; and (d) analysis and implementation of methods for selecting graphical models
in high dimensions, with applications to terrorist cell monitoring, and social network analysis.
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1 Summary

In this final report, we summarize research activity associated with AFOSR grant FA9550-09-1-0466.
Overall, the grant was used to support the co-PI Prof. Martin Wainwright, as well as grad-
uate students Sahand Negahban (Ph.D 2012, now an assistant professor at Yale Univer-
sity), Garvesh Raskutti (Ph. D 2012, now an assistant professor at University of Wisconsin,
Madison), Alekh Agarwal (Ph.D. 2012, now research scientist at Microsoft Research), and
Po-Ling Loh (Ph.D. expected in 2014). The grant has lead to the refereed conference pa-
pers [26, 24, 33, 13], as well as the journal publications [36, 2, 1, 34, 14, 37, 35, 25].

2 Honors and awards

During the grant period, Professor Martin Wainwright received an IEEE Communications
Society Best Paper Award (2010), a Joint IEEE Information Theory and Communications
Best Paper Award (2012), and a Medallion Lecturership from the Institute of Mathematical
Statistics (2013). Graduate Student Po-Ling Loh received a Best Paper Award from the NIPS
Conference in December 2012.

3 Estimation of low-rank matrices in high dimensions

In the papers [33, 34], we study the problem of estimating a matrix Θ∗ ∈ Rp1×p2 that is
either exactly low rank, meaning that it has at most r � min{p1, p2} non-zero singular
values, or more generally is near low-rank, meaning that it can be well-approximated by a
matrix of low rank. Such exact or approximate low-rank conditions are appropriate for many
applications, including multivariate or multi-task forms of regression, system identification for
autoregressive processes, collaborative filtering, and matrix recovery from random projections.
Analogous to the use of an `1-regularizer for enforcing sparsity, we consider the use of the
nuclear norm (also known as the trace norm) for enforcing a rank constraint in the matrix
setting. By definition, the nuclear norm is the sum of the singular values of a matrix, and
so encourages sparsity in the vector of singular values, or equivalently for the matrix to be
low-rank.

One motivation for our work is the problem of recovering system matrices in vector au-
togressive (VAR) processes [28]. A VAR model consists of a sequence {X(t)}∞t=1, where each
X(t) ∈ Rp is a vector of state variables, that evolves according to the recursion

X(t+ 1) = Θ∗X(t) +W (t), t = 1, 2, 3, · · · ,

where W (t) ∈ Rp are driving noise terms. Such models are widely used in different settings.
They are integral parts of subspace tracking models in signal processing, motion models models
in computer vision, financial data analysis, and neural data analysis (e.g., [15, 5, 10, 10]). This
model and closely related ones also arise in the problem of collaborative filtering [41], in which
the goal is to predict users’ preferences for items (such as movies or music) based on their
and other users’ ratings of related items. The system matrix Θ∗ ∈ Rp×p is unknown, and our
goal is to estimate it, using a number of samples N less than the dimension of the problem.
Imposing a rank r constraint on a matrix Θ∗ ∈ Rp1×p2 is equivalent to requiring the rows (or
columns) of Θ∗ lie in some r-dimensional subspace of Rp2 (or Rp1 respectively).
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Figure 1. (a) Four entries of a p = 100 dimension vector autoregressive (VAR) process,
generated from a system matrix Θ∗ ∈ Rp×p with rank r = 3. Every component is a mixture
of the r = 3 signal components with p − r = 97 noise components. (b) Data that has been

“de-mixed” using the learned model Θ̂: the first three components (in red) are estimates of the
signal, whereas the remaining blue component is pure noise. Note how the signal components
are much smoother than the noise component.

In order to recover low-rank matrices, we propose solving the following semidefinite pro-
gram (SDP),

Θ̂ ∈ arg min
Θ∈Rp1×p2

{ 1

2N
‖y − XN (Θ)‖22 + λN |||Θ|||1

}
, (1)

where λN > 0 is a regularization parameter. Here XN : Rp1×p2 → RN is an operator that maps
matrices to N -vectors of observations. This optimization problem can be solved efficiently by
various techniques, and we our main result is to prove upper bounds on the Frobenius norm
|||Θ̂ − Θ∗|||F between the true matrix Θ∗ and the estimate Θ̂. In particular, we prove that
under mild conditions, the Frobenus norm error satisfies the bound

|||Θ̂−Θ∗|||2F = O
(r(p1 + p2)

N

)
(2)

with probability greater than 1 − c1 exp(−c2Nλ
2
N ). This bound implies that it is possible

to obtain a good estimate of the matrix using far fewer than p1 p2 samples as long as the
rank r is small. These theoretical results provide a remarkably good characterization of the
high-dimensional scaling of this method; see Figure 2 for some illustrative results.

4 Dual Averaging for Distributed Optimization

We consider an optimization problem based on functions that are distributed over a network.
More specifically, let G = (V,E) be an undirected graph over the vertex set V = {1, 2, . . . , n}
with edge set E ⊂ V × V . Associated with each i ∈ V is convex function fi : Rd → R, and
our overarching goal is to solve the optimization problem

min
x

1

n

n∑
i=1

fi(x) such that x ∈ X , (3)
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Figure 2. Results of applying the SDP (1) with nuclear norm regularization to the problem of

low-rank multivariate regression. (a) Plots of the Frobenius error |||Θ̂−Θ∗|||F on a logarithmic
scale versus the sample size N for three different matrix sizes p ∈ {40, 80, 160}, all with rank
r = 10. (b) Plots of the same Frobenius error versus the rescaled sample sizeN/(rp). Consistent
with theory, all three plots are now extremely well-aligned.

where X is a closed convex set. Each function fi is convex and hence sub-differentiable, but
need not be smooth. We assume without loss of generality that 0 ∈ X , since we can simply
translate X . Each node i ∈ V is associated with a separate agent, and each agent i maintains
its own parameter vector xi ∈ Rd. The graph G imposes communication constraints on
the agents: in particular, agent i has local access to only the objective function fi and can
communicate directly only with its immediate neighbors j ∈ N (i) : = {j ∈ V | (i, j) ∈ E}.

(a) (b) (c) (d)

Figure 3. Illustration of some graph classes of interest in distributed protocols. (a) A 3-
connected cycle. (b) Two-dimensional grid with 4-connectivity, and non-toroidal boundary
conditions. (c) A random geometric graph. (d) A random 3-regular expander graph.

Problems of this nature arise in a variety of application domains, and as motivation for
the analysis to follow, let us consider a few here. A first example is a sensor network, in
which each agent represents a sensor mote, equipped with a radio transmitter for commu-
nication, some basic sensing devices, and some local memory and computational power. In
environmental applications of sensor networks, each mote i might take a measurement yi of
the temperature, and the global objective could be to compute the median of the measure-
ments {y1, y2, . . . , yn}. This median computation problem can be formulated as minimizing
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the scalar objective function 1
n

∑n
i=1 fi(x), where fi(x) = |x− yi|. Similar formulations apply

to the problem of computing other statistics such as means, variances, quantiles and other M -
estimators. Another motivating example is the machine learning problem of classification, in
which X is the parameter space of the statistician or learner. Each function fi is the empirical
loss over the subset of data assigned to the ith processor, and assuming that each subset is
of equal size (or that the fi are normalized suitably), the average f is the empirical loss over
the entire dataset. Here we use cluster computing as our computational model, where each
processor is a node in the cluster, and the graph G contains edges between those processors
that are directly connected with small network latencies.

We consider an appropriate and novel extension of dual averaging to the distributed set-
ting. At each iteration t = 1, 2, 3, . . ., the algorithm maintains n pairs of vectors (xi(t), zi(t)) ∈
X×Rd, with the ith pair associated with node i ∈ V . At iteration t, each node i ∈ V computes
an element gi(t) ∈ ∂fi(xi(t)) in the subdifferential of the local function fi and receives infor-
mation about the parameters {zj(t), j ∈ N (i)} associated with nodes j in its neighborhood
N (i). Its update of the current estimated solution xi(t) is based on a convex combination
of these parameters. To model this weighting process, let P ∈ Rn×n be a symmetric matrix
of non-negative weights that respects the structure of the graph G, meaning that for i 6= j,
Pij > 0 only if (i, j) ∈ E. We assume that P is a doubly stochastic matrix, so that

n∑
j=1

Pij =
∑

j∈N (i)

Pij = 1 for all i ∈ V, and

n∑
i=1

Pij =
∑

i∈N (j)

Pij = 1 for all j ∈ V.

Using this notation, given the non-increasing sequence {α(t)}∞t=0 of positive stepsizes, each
node i ∈ V = {1, 2, . . . , n} performs the updates

zi(t+ 1) =
∑

j∈N (i)

Pijzj(t)− gi(t), and (4a)

xi(t+ 1) = Πψ
X (−zi(t+ 1), α(t)), (4b)

where the projection Πψ
X is orthogonal projection onto X . Note that each node obtains its

new dual parameter zi(t + 1) from a weighted average of its own subgradient gi(t) and the
parameters {zj(t), j ∈ N (i)} in its own neighborhood N (i), and then computes the next local
iterate xi(t+ 1) by a projection defined by the proximal function ψ and stepsize α(t) > 0.

We consider several settings for distributed minimization. We study fixed communica-
tion protocols, which are of interest in a variety of areas such as cluster computing or sensor
networks with a fixed hardware-dependent protocol. We also investigate randomized commu-
nication protocols as well as randomized network failures, which are often essential to handle
gracefully in wireless sensor networks and large clusters with potential node failures. Ran-
domized communication also provides interesting tradeoffs between communication savings
and convergence rates. In this setting, we obtain much sharper results than previous work by
studying the spectral properties of the expected transition matrix of a random walk on the
underlying graph. We also present a relatively straightforward extension of our analysis for
stochastic gradient information.

We provide sharp bounds on their convergence rates as a function of the network size and
topology. Our analysis clearly separates the convergence of the optimization algorithm itself
from the effects of communication constraints arising from the network structure. We show
that the number of iterations required by our algorithm scales inversely in the spectral gap of
the network. The sharpness of this prediction is confirmed both by theoretical lower bounds
and simulations for various networks.
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5 Sparse non-parametric regression in high dimensions

Sparsity is an attractive assumption for both practical and theoretical reasons: it leads to
more interpretable models, reduces computational cost, and allows for model identifiabil-
ity even under high-dimensional scaling, where the dimension p exceeds the sample size N .
While a large body of work has focused on sparse linear models, many applications call for
the additional flexibility provided by non-parametric models. In the general setting, a non-
parametric regression model takes the form y = f∗(x1, . . . , xp) +w, where f∗ : Rp → R is the
unknown regression function, and w is scalar observation noise. Unfortunately, this general
non-parametric model is known to suffer severely from the so-called “curse of dimensionality”,
in that for most natural function classes (e.g., twice differentiable functions), the sample size
N required to achieve any given error grows exponentially in the dimension p. Given this
curse of dimensionality, it is essential to further constrain the complexity of possible functions
f∗. One attractive candidate is the class of additive non-parametric models [17], in which the
function f∗ has an additive decomposition of the form

f∗(x1, x2, . . . , xp) =

p∑
j=1

f∗j (xj), (5)

where each component function f∗j is univariate. Given this additive form, this function class
no longer suffers from the exponential explosion in sample size of the general non-parametric
model. Nonetheless, one still requires a sample size N � p for consistent estimation; note
that this is true even for the linear model, which is a special case of equation (5).

A natural extension of sparse linear models is the class of sparse additive models, in which
the unknown regression function is assumed to have a decomposition of the form

f∗(x1, x2 . . . , xp) =
∑
j∈S

f∗j (xj), (6)

where S ⊆ {1, 2, . . . , p} is some unknown subset of cardinality |S| = s. Of primary interest
is the case when the decomposition is genuinely sparse, so that s � p. To the best of our
knowledge, this model class was first introduced by [21], and has since been studied by various
researchers [20, 29, 38, 45]. Note that the sparse additive model (6) is a natural generalization
of the sparse linear model, to which it reduces when each univariate function is constrained
to be linear.

In past work, several groups have proposed computationally efficient methods for estimat-
ing sparse additive models (6). Just as `1-based relaxations such as the Lasso have desirable
properties for sparse parametric models, more general `1-based approaches have proven to
be successful in this setting. [21] proposed the COSSO method, which extends the Lasso to
cases where the component functions f∗j lie in a reproducing kernel Hilbert space (RKHS); see
also [45] for a similar extension of the non-negative garrote [8]. [6] analyzes a closely related
method for the RKHS setting, in which least-squares loss is penalized by an `1-sum of Hilbert
norms, and establishes consistency results in the classical (fixed p) setting. Other related `1-
based methods have been proposed in independent work by [19], [38] and [29], and analyzed
under high-dimensional scaling (p� N). Each of the above papers establish consistency and
convergence rates for the prediction error under certain conditions on the covariates as well as
the sparsity s and dimension p. However, it is not clear whether the rates obtained in these
papers are sharp for the given methods, nor whether the rates are minimax-optimal. Past
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work by [20] establishes rates for sparse additive models with an additional global bound-
edness condition, but as will be discussed at more length in the sequel, these rates are not
minimax optimal in general.

This paper makes three main contributions to this line of research. Our first contribution
is to analyze a simple polynomial-time method for estimating sparse additive models and
provide upper bounds on the error in the L2(P) and L2(Pn) norms. The estimator1 that
we analyze is based on a combination of least-squares loss with two `1-based sparsity penalty
terms, one corresponding to an `1/L

2(Pn) norm and the other an `1/‖·‖H norm. Our first main
result shows that with high probability, if we assume the univariate functions are bounded and
independent, the error of our procedure in the squared L2(Pn) and L2(P) norms is bounded by
O
( s log p

N + sδ2
n

)
, where the quantity δ2

n corresponds to the optimal rate for estimating a single
univariate function. Importantly, our analysis does not require a global boundedness condition
on the class Fs of all s-sparse models, an assumption that is often imposed in classical non-
parametric analysis. Indeed, as we discuss below, when such a condition is imposed, then
significantly faster rates of estimation are possible. The proof involves a combination of
techniques for analyzing M -estimators with decomposable regularizers [32] combined with
various techniques in empirical process theory for analyzing kernel classes [7, 31, 42]. Our
second contribution is complementary in nature, in that it establishes algorithm-independent
minimax lower bounds on L2(P) error. These minimax lower bounds are specified in terms
of the metric entropy of the underlying univariate function classes. For both finite-rank
kernel classes and Sobolev-type classes, these lower bounds match our achievable results up
to constant factors in the regime of sub-linear sparsity (s = o(p)). Thus, for these function
classes, we have a sharp characterization of the associated minimax rates. The lower bounds
derived in this paper initially appeared in the Proceedings of the NIPS Conference (December
2009). The proofs of Theorem 2 is based on characterizing the packing entropies of the class
of sparse additive models, combined with classical information theoretic techniques involving
Fano’s inequality and variants [16, 43, 44].

6 High-dimensional inference with graphical models

Inference methods based on graphical models are now prevalent in many fields, running the
gamut from computer vision and civil engineering to political science and epidemiology. In
many applications, learning the edge structure of the underlying graphical model is relevant
to the researcher—for instance, a graphical model may be used to represent friendships be-
tween people in a social network, or links between organisms with the propensity to spread
an infectious disease. It is well-known that zeros in the inverse covariance matrix of a multi-
variate Gaussian distribution indicate the absence of an edge in the corresponding graphical
model. This fact, combined with techniques in high-dimensional statistical inference, has been
leveraged by many authors to recover the structure of a Gaussian graphical model when the
edge set is sparse (e.g., see the papers [39, 46, 11, 30] and references therein). Recently, Liu et
al. [23, 22] introduced the notion of a nonparanormal distribution, which generalizes the Gaus-
sian distribution by allowing for univariate monotonic transformations, and argued that the
same structural properties of the inverse covariance matrix carry over to the nonparanormal.

However, the question of whether there exists a relationship between conditional indepen-
dence and the structure of the inverse covariance matrix in a general graph remains unresolved.
In this paper, we focus on discrete graphical models, and establish a number of interesting

1The same estimator was proposed concurrently by [20]; we discuss connections to this work in the sequel.
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links between covariance matrices and the edge structure of the underlying graph. We show
that, instead of only analyzing the standard covariance matrix, it is often fruitful to augment
the usual covariance matrix with higher-order interaction terms. Our main result has a strik-
ing corollary in the context of tree-structured graphs: for any discrete graphical model, the
inverse of a generalized covariance matrix is always (block) graph-structured. In particular,
for binary variables, the inverse of the usual covariance matrix reflects the zero-pattern of the
tree. We also establish a number of more general results that apply to non-tree-structured
graphs, and derive several corollaries that guarantee consistency of known methods for graph
selection and lead to a new method for neighborhood selection in an arbitrary sparse graph.
Our methods handle noisy or missing data in a seamless manner.

Other related work on graphical model selection for discrete graphs includes the clas-
sic Chow-Liu algorithm for trees [12], nodewise logistic regression for discrete models with
pairwise interactions [40, 18], and techniques based on conditional entropy or mutual infor-
mation [9, 4]. Our main contribution is to present a clean and surprising result on a simple
link between the inverse covariance matrix and edge structure of a discrete model, which may
be used to derive inference algorithms applicable even to data with systematic corruptions.
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(a) Dino graph with missing data (b) Chain graph with missing data (c) Star graph

Figure 4. Simulation results for global and nodewise recovery methods on binary Ising models.
Panel (a) shows simulation results for the log-determinant method applied to the dinosaur
graph, averaged over 50 trials. Panel (b) shows simulation results for nodewise regression
applied to chain graphs with different numbers of nodes, averaged over 50 trials. Panel (c)
shows simulation results for nodewise regression applied to star graphs with maximal node
degree

√
p, averaged over 100 trials. The horizontal axis gives the rescaled sample size n

d log p .

Figure 4 depicts the results of several simulations we performed to test our theoretical
predictions. In all cases, we generated binary Ising models with node weights 0.1 and edge
weights 0.3 (using spin {−1, 1} variables). Panel (a) shows the results of our global recovery
method applied to the dinosaur graph. The solid curve shows the probability of success in
recovering the 15 edges of the graph, as a function of the rescaled sample size n

log p , where p =
13. The dotted curves show the corresponding success probabilities for missing data fractions
ρ ∈ {0.1, 0.15, 0.2}, using the corrected estimator. We observe that all four runs display
a transition from success probability 0 to success probability 1 in roughly the same range,
as predicted by our theory. Indeed, since the dinosaur graph has only singleton separators,
our theory ensures that the inverse covariance matrix is exactly graph-structured. Note that
the curves shift right as the fraction ρ of missing data increases, since the problem becomes
harder.

Panels (b) and (c) show simulation results for our nodewise regression method on chain
and star graphs, with increasing numbers of nodes p ∈ {16, 32, 64}. The modified Lasso
program was optimized using a form of composite gradient descent due to Agarwal et al. [3],
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guaranteed to converge to a small neighborhood of the optimum even when the problem is
non-convex [27]. Our theory predicts that, when plotted against rescaled sample size n

log p ,
the curves for different problems should be roughly aligned, which we observe for both fully-
observed samples (solid lines) and missing data (dotted lines). Again, the curves for missing
data (ρ = 0.1) are shifted right relative to the curves for fully-observed data, since the recovery
problem becomes harder with a higher fraction of missing data. Panel (c) shows similar curves
for fully-observed samples from a star graph, where the central hub has degree

√
p. Here, we

use the rescaled sample size n
d log p , since the degree is growing.
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